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Abstract

Different economies seem to exhibit multiplicity with regard to
economic paths. Upon facing severe economic shocks, some advanced
economies experience a no-growth phase despite having had positive
and occasionally high growth rates immediately before the shocks.
In contrast, many underdeveloped nations are stuck in a no-growth
trap and their growth power is fragile, namely they sometimes en-
counter big economic shocks after starting to develop. With the aim
of integrative investigation of the mechanisms of these phenomena,
this study develops a concise dynamic model involving monopolis-
tic variety-expansion research and development (R&D) with the R&D
spillover and capital R&D inputs. The model provides multiple steady
states that contain high-, low-, and no-growth phases, each of which is
selected by the expectations. Furthermore, high growth is impossible
during early stages of development, and while low growth is globally
possible, the dynamic property might show indeterminacy, and thus,
the expectation formation contains some difficulties.

∗This work was conducted with financial support from JSPS KAKENHI Grant Number
15K03360, JSPS KAKENHI Grant Number 26380348, and the grant from Kobe Academic
Park Association for the Promotion of Inter-University Research and Exchange.
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1 Introduction

The classical study of Solow’s growth accounting (Solow 1957) showed that

the source of long-run growth is TFP (total factor productivity) growth,

where economies–especially, advanced countries–grow through technological

progress driven by R&D activities. Although Solow’s result implies that

economic growth can be promoted by technological progress, some empirical

works such as Easterly (1994) and Quah (1996, 1997) have shown that the

world economies are polarized into the rich and the poor, that is, many

developing counties fall to grow and are stuck in a no-growth phase.

Furthermore, even the modern advanced countries confront several large

shocks (e.g., the Japanese bubble collapse 1991, the dot-com bubble burst

2001, the 2008 financial crisis, and the European Debt Crisis 2010), and are

often stuck in stagnation. In particular, the stagnation of Japan after the

bubble collapse caused a long-run stagnation called ”the Lost Decade” or the

”Lost Two Decades”. Recently, some pessimistic views for economic growth

such as Summers’ (2014) ”secular stagnation” have been proposed. As for the

developing countries, while growth in some economies (e.g., the Four Asian

Dragons and BRICS) has started, their fragility occasionally draws economic

shocks, such as the 1997 Asian Financial Crisis. Thus, in the polarized global

economy, not only newly developing economies but also advanced growing

economies transit between positive and no-growth phases, which implies that

the multiplicity of economic paths exists, and then, the change of expecta-

tions caused by some economic shocks makes the economy jump between

these. Thus, we aim to develop a model with the following properties: (i) a

no-growth steady state without R&D, (ii) long-run steady states with R&D,

and (iii) both steady states being possible and interchangeable.

As for the models that treat long-run no-growth and positive-growth

steady states and a regime switch between them, we can refer to some the-

oretical works describing the regime change from capital-based growth with

decreasing returns to long-run positive growth1 (Zilibotti 1995; Matsuyama

1This phenomenon is empirically supported by Abramovitz and David (1973) and
Hayami and Ogasawara (1999). By using US and Japanese data, respectively, they demon-
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1999, 2001; Funke and Strulik 2000; Galor and Moav 2004; Irmen 2005;

Kuwahara 2007, 2013). The present study directly shares its structure with

those of Matsuyama (1999, 2001) and Kuwahara (2007, 2013), who focus on

the regime switch between capital-based and R&D-based growth.

Matsuyama (1999, 2001) contain two regimes, capital-accumulation-based

growth and R&D-based growth, but their main concern is the business cy-

cles between these two regimes. Next, Kuwahara (2013) yields a long-run,

positive, or no-growth saddle-stable steady state, and therefore, the proper-

ties (i) and (ii) stated above are obtained but condition (iii) is not. How-

ever, Kuwahara (2007) obtains the result that a unique equilibrium without

R&D exists under low capital stock, and after sufficient capital stock is accu-

mulated, multiple equilibria (i.e., equilibrium with no, moderate, and large

R&D input) emerge. Further, after adequate accumulation of capital, while

an equilibrium again becomes unique, it is accompanied by R&D activities.

In other words, in Kuwahara (2007), multiplicity is a characteristic of the

middle stage of economic development, and hence, analysis of condition (iii)

is also insufficient.

To generate the global multiplicity, we introduce a slight modification on

Kuwahara (2013) by considering that the R&D has a strong spillover on the

small aggregate R&D input2. Thus, the steady states obtained in this study

have no, low, and high R&D input. The obtained results are as follows.

Firstly, from the conditions for R&D, we show that globally, no R&D can be

at equilibrium; therefore, even if a county is advanced, it has the possibility

of falling in no-growth traps. Secondly, we have two types of equilibrium of

positive R&D, namely middle and high R&D. For the middle R&D equilib-

rium, the dynamical property of this regime might be indeterminacy, and

it is possible to be selected globally, namely for all capital stock. For the

high R&D equilibrium, this regime is saddle stable, but it is possible to be

selected by the economy with sufficient knowledge-adjusted capital stock.

Thus, the equilibrium with middle R&D is the unique equilibrium for a de-

veloping country, which does not have sufficient knowledge-adjusted capital

stock, to grow through R&D. Consequently, the economic path with R&D

for developing countries may fluctuate heavily.

strated that an economy mainly grows by capital accumulation at an early stage of the
development and then shifts to growth by R&D activities.

2We can refer to Chu and Chen (2010) as a model introducing the spillover of R&D
and deriving multiple steady states regarding R&D input.
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The rest of the paper is organized as follows. Section 2 establishes the

model of a decentralized economy. The existence of the two types of steady

states and their determinants is explained in Section 3. The dynamic prop-

erty of the model is analyzed in Section 4. Finally, Section 5 concludes the

paper.

2 The Model

The present study adopts a Romer-type (Romer 1990) production structure.

It considers three sectors: final good, intermediate goods, and R&D. Fol-

lowing Zilibotti (1995), we consider a composite durable good consisting of

the private component of any reproducible private factor of production such

as human and physical capital (simply called capital) with aggregate value

K, and assume that it is used for either intermediate good production or

R&D input3. Following Romer (1990), intermediate goods are patented, and

therefore, supplied monopolistically.The number of the developed interme-

diate goods is denoted as A, and inelastically supplied labor L, which is,

therefore, regarded as the economy’s population scale, is assumed to grow at

ecogenously given constant rate n. Each intermediate good is indexed by i,

and X̃(i) denotes the supply of the ith intermediate good. The number of

the intermediate-goods cluster—the variety of intermediate goods—denoted

by A, therefore it is i ∈ [0, A]. and since all types of intermediate goods

is used in poduction of final goods, A represents the technological level in

the economy, and can be regarded as the level of knowledge accumulation, or

knowledge capital. Final good is consumed as a consumer good or invested as

capital. Capital is used as an intermediate good for supplying the final good

sector (KY ) and for investment to create new intermediate goods, that is,

R&D (KA). Accordingly, the market-clearing condition for capital imposes

K = KY + KA, where K is the amount of capital in the economy. Time is

continuous, and the final good is taken as the numéraire.

In this papaer, we use capital later Z as an aggregate variable, and for Z,

define as follows: z ≡ Z/L, Z̃ ≡ Z/A, and z̃ ≡ Z/(AL), which respectively

imply per capita, knowledge-adjusted, and knowledge-adjusted per capita

value of Z.

3See Kuwahara (2013) for an explicit treatment of human capital. The main working
of the capital derived in it is essentially similar to that of our one-type capital model.
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2.1 Production

The production function of the final good is

Y = L1−α

∫ A

0

x(i)αdi, 0 < α < 1, (1)

where Y denote final good production. Intermediate goods are produced us-

ing physical capital and are used for producing the final good. One unit

of intermediate goods is assumed to be produced by η units of capital.

Therefore, the capital allocated to the production of final good KY is quan-

tified as KY ≡
∫ A

0
ηX̃(i)di. An assumption of symmetric equilibrium re-

garding intermediate goods, that is, X̃ = X̃(i), converts the quantification

of K into KY = ηAX̃, or equivalently, X̃ = (1/η)(KY /A). Substituting

X̃(i) = X̃ = (1/η)(KY /A) into Eq. (1), we have reduced final good pro-

duction function as Y = η−αA1−αKα
Y L1−α4. Using Y derived above and the

assumption that final good Y is consumed or invested, we yield the following

resource constraint for the final good:

K̇ = η−αKα
Y A1−αL1−α − C(= Y − C), (2)

where K̇ and C denote an increment in aggregate capital K and consumption,

respectively.

The final good sector is competitive, and Eq. (1) yields the first-order

conditions (FOCs) for final good production. These are given as ∂Y
∂x(i)

= p(i),

where p(i) denotes the price of intermediate good i.

In our model, intermediate goods are protected by patents, and a firm

holding a patent for the production of the ith intermediate good can be

designated as a supplier of the ith intermediate good. Thus, the ith inter-

mediate good is supplied monopolistically by the ith firm. Since we assume

that one unit of an intermediate good is produced using η units of capi-

tal, the profit of the firm producing the ith intermediate good is given as

Π̃(i) ≡ p(i)X̃(i) − rηX̃(i), where r is the rental price of capital. Under the

assumption of symmetric equilibrium, the firm producing an intermediate

good maximizes this profit subject to ∂Y
∂x(i)

= p(i). This optimization condi-

tion yields the following: X̃(i) = X̃ =
(

α2

rη

) 1
1−α

and p(i) = p =
(

η
α

)
r, where

4It should be noted that the parameter α that determines capital/labor share is larger
than the usual case where K is assumed to be composed by only physical capital.
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X̃ = X/A means per patent value. Applying the notation z̃ to Y , r, and Π̃,

and using Eq. (1), KY = ηAX̃, and the FOCs, we obtain knowledge-adjusted

output ỹ, interest rate r, and the knowledge-adjusted per capita profit from

the production of intermediate goods π̃, respectively, from the following:

ṽ = η−αk̃α
Y , r = α2η−αk̃α−1

Y , and π̃ = π̃(i) = (1 − α)αỹ, (3)

where, in equilibrium, the profit of each firm producing an intermediate good

is equalized; therefore, we can write π = π(i).

2.2 Innovation

R&D firms create new intermediate goods, and each innovation obtains the

perpetual patent that yields a perpetual sequence of monopoly profits π,

which comprise the revenue of R&D. Thus, the present value of this stream

represents the value of R&D5: Ṽt ≡
∫ ∞

t
Π̃(τ)e−

R τ
t r(s)dsdτ. Free entry of R&D

is assumed. Therefore, if revenue from R&D exceeds its costs, an infinite

amount of capital would be allocated to it. Thus, revenue from R&D cannot

exceed the cost in equilibrium, and if this is achieved, investment in R&D

is unprofitable, and no resources are allocated to R&D. In this case, an

equilibrium without R&D (KA = 0) occurs. Thus, if the economy is in

equilibrium with positive R&D investment, the revenues generated by R&D

must be equated to its cost.

Since we assume that capital is invested to undertake R&D, firms that

engage in R&D must pay a rental cost r for their R&D activities in the pro-

cess of innovation. Furthermore, innovation is assumed to be the discovery

of new intermediate goods that are added to the existing set of intermediate

goods; therefore, the expansion of variety can be shown by the time deriva-

tion of knowledge capital, Ȧ. Thus, the aggregate value in the economy is

the summation of all of these firms, Ṽ A; the aggregate innovated value by

R&D and its input cost are given as vȦ and rKA, respectively, and the free

entry on R&D equates these two, and thus, the relationships between market

equilibrium and capital allocation are summarized as

Solow Regime: KA = 0

Romer Regime: KA > 0

}
⇐⇒ r(t)KA(t)

{
>

=

}
Ṽ (t)Ȧ(t). (4)

5We define the aggregate value of firms and profits as follows: V ≡∫ A

0
Ṽ (i)di, and Π ≡

∫ A

0
Π̃(i)di, respectively.
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Whether an economy conducts R&D depends on condition (4). When KA >

0, R&D occurs, causing the economy to grow through endogenous techno-

logical change. Following Matsuyama (1999), we term this regime as the

Romer regime. Condition (4) states that equality rKA = Ṽ Ȧ, or rk̃A = gAv,

where gZ ≡ Ż/Z, holds in the Romer regime. When k̃A = 0, no R&D occurs,

and the economy grows only by capital accumulation. Following Matsuyama

(1999), we term this as the Solow regime.

Following each regime, differentiating Ṽ with respect to time provides the

following asset equations:

Solow Regime: K̃A = 0

Romer Regime: K̃A > 0

}
⇐⇒ r(t)Ṽ (t)

{
>

=

}
Π̃(t) + ˙̃V (t). (5)

If R&D is undertaken, technological knowledge is assumed to increase

according to per capita capital investment in R&D. We assume that the

R&D function is as follows:

Ȧ =
φ(t)

Γ(t)
A(t)KA(t),

where φ is the R&D efficiency. and Γ captures the factor that eliminates

scale effects in this model. If φ̃ is assumed to be constant, the case is similar

to that of the Romer-type technology: innovated R&D linearly depends on

R&D input. To obtain the existence of steady states, we simply assume that

Γ(t) = A(t)L(t), and the above equation is made as

gA(t) = φ(t)k̃A(t). (6)

Funke & Strulik (2000), which shares the R&D structure of endogenously

accumulated (human) capital as R&D input, also adopt a technology that is

essentially the same type.

One shortcoming for our concern in the analysis of the no-growth trap is

the constant return of R&D, which assures efficiency of R&D6. Therefore, we

assume that φ is an increasing function for a sufficiently small R&D input:

Assumption on R&D Property While the return is assumed to be con-

stant and positive over the domain with sufficient R&D input, we introduce

6Therefore, the Jones technology (Jones 1995) also has the same shortcoming. It has
infinite large marginal efficiency for the R&D input tending to 0.
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slightly increasing returns from knowledge spillover of R&D activities. Thus,

R&D efficiency φ is continuous for ∀k̃A ≥ 0 and decreasing to 0 as social

R&D input tends to 0, and we specify φ as follows:

φ =


δ, δ > 0 for k̃A > κ

φ(k̃A), φ′(·) > 0 for k̃A ∈ [0, κ]

0, for k̃A = 0

where φ is the function with a threshold value κ, above which, it is constant at

δ, and since φ is assumed to be continuous, we assume that limk̃A→0 φ(k̃A) = 0

and limk̃A→κ φ(k̃A) = δ.

The picture of φ is depicted in Fig. 1. The parameter δ represents R&D

efficiency and is constant on almost all domains but increasing in the small

R&D input. Thus, marginal R&D efficiency is smaller on near 0 R&D input.

To complete the model, we examine the consumption decision of house-

holds. It is assumed that a representative household has a normal CRRA

(constant relative risk aversion) type utility. Then, the Euler equation is

obtained as θgc(t) = r(t) − n − ρ, where c, θ and ρ, respectively, denote per

capita consumpotion, the CRRA parameter and subjective discount rate.

3 Steady States

We now analyze an economy in a steady state, wherein all variables, Y , C,

K, KY , and A, grow at constant rates, and therefore ỹ, c̃, k̃, and k̃Y are

constant. Our model contains two types of steady states: one with R&D

(and therefore, positive growth) and the other without R&D (and therefore,

no growth). We call these types of states the Romer steady states (RSS) and

the Solow steady states (SSS), respectively. Eqs. (4) and (6) yield

ṽ(t) =
r(t)

φ(t)
. (7)

Eqs. (2) and (3) imply that gss
y = gss

k = gss
c = gss

A + n, where index

ss represents the value of the steady states. Substituting gss
c = gss

A and

gA = φ(k̃A)k̃A into the Euler equation, we obtain one conditional equation:

rss = θφssk̃ss
A + ρ + n. (8)

8



In the steady state, gss
ṽ = gss

π̃ = 0 holds because k̃ss is constant, and

therefore, gss
ṽ = 0. Substituting these relationships, that is, substituting

Eqs. (3), (7), and (8) into Eq. (5) yields the following condition for R&D:

Romer Steady States (RSS):

Solow Steady States (SSS):

}
⇐⇒

ρ + n + θφss(k̃ss
A )k̃ss

A = α2η−αk̃ss α−1
Y + n

{
=

>

}
φ(k̃ss

A )
1 − α

α
k̃ss

Y . (9)

First, we characterize the SSS. In the SSS, Eq. (9) holds with inequality

and all capital is devoted to the production of the final good. Therefore,

k̃∗∗
A = 0; that is, k∗∗ = k̃∗∗

Y and g∗∗
A = 0, where ∗∗ denotes the steady state

value in the SSS. Substituting this into the Euler equation yields r∗∗ = ρ+n,

which along with r in Eq. (3) yields the equilibrium capital stock in the SSS:

SSS: k̃∗∗ = k̃∗∗
Y =

[
α2η−α

ρ + n

] 1
1−α

.

Under the assumption of φ (See Fig. 1), the second and third terms of Eq.

(9) imply that the second term is always positive, and the third tends to 0.

Thus, we immediately obtain the following lemma:

Lemma 1-1 The SSS is always possible.

It should be noted that this property stems from limk̃A→0 φ(k̃A) = 0.

3.1 Property of the RSS

Next, we investigate the properties of steady states with positive R&D input.

As is obtained below, we consider two equilibria, with large and small R&D

inputs, respectively denoted by RSS(+) and RSS(–). The first and third

terms, and first and second terms of Eq. (9) respectively yield the following

two equations:

k̃ =

(
1 +

αθ

1 − α

)
k̃A +

α(ρ + n)

1 − α
φ(k̃A)−1

(
≡ Φ1(k̃A)

)
,

k̃ = k̃A +

[
α2η−α

ρ + n + φ(k̃A)k̃A

] 1
1−α (

≡ Φ2(k̃A)
)
.
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The curves of these two equations are depicted in Fig. 2. The intersection

points of these two equations, Φ1 and Φ2, enable the two equilibria for k̃A to

be greater than 0. For κ < k̃A, φ = δ makes Φ1 a linear function defined as

Φ̄1 ≡
(
1 + αθ

1−α

)
k̃A + αρ+n

(1−α)δ
, Φ2 asymptotically moves close to Φ̄2(k̃A) ≡ k̃A +[

α2η−α

ρ+n

] 1
1−α

from the above of Φ̄2, and Φ̃1 has steeper angle than Φ̄2, hence,

Φ̄2(κ) > Φ̄1(κ) is the necessary and sufficient condition for the equilibrium

of R&D input larger than of κ (which we call RSS(+)) to uniquely exist,

and the equilibrum value of R&D input is denoted as k̃∗+

A . The condition

Φ̄2(κ) > Φ̄1(κ) is rewritten as δ > Ω under κ < κ̄, where δ > Ω is derived

from (Φ̄2(0) ≡)φ2 > φ1(≡ Φ̄1(0)), and we define

Ω ≡ α− 1+α
1−α η

α
1−α ρ(ρ + n)

1
1−α

1 − α
, and κ̄ ≡ arg

{
κ

∣∣∣∣∣
[
α(ρ + θδκ)

(1 − α)δ

]1−α

=
α2η−α

ρ + n + δκ

}
.

It should be noted that κ̄ > 0 is satisfied. It can be clearly observed that

k̃∗+

Y > κ always and uniquely exists as long as a feasible condition k̃Y ∈ (0, k̃]

is satisfied. From k̃ = Φ2(k̃A) and k̃ = k̃Y + k̃A, we obtain the equilibrium

capital allocation to the production of the final good in RSS(+): k̃∗+

Y = φ2.

When δ > Ω holds, we further have the possibility of the steady state on

k̃A ∈ (0, κ), which has smaller R&D input than RSS(+), so we call it RSS(–).

Since Φ1(κ) < Φ2(κ), limk̃A→0 Φ1(k̃A) > limk̃A→0 Φ2(k̃A), and continuous φ(·),
there is at least one intersection of Φ1 and Φ2. Furthermore, if the intersec-

tion locates in the domain k̃ > k̃A, the steady state is feasible. Hereafter,

we assume that there is one steady state of RSS(–), which is obtained, for

example, by assuming that φ is an exponential function with constant power

(exponential coefficient). Thus, we obtain the following lemma.

Lemma 1-2 For the existence of RSS, the following parameter condition

should hold:

δ > Ω(ρ, n, α, η), κ < κ̄(δ, ρ, n, θ, α, η), ⇔ RSS(+) is feasible.

namely, sufficiently small κ and sufficiently large R&D parameter δ yields

RSS(+). In this case, at least one equilibrium with less R&D input also ex-

ists. We name this equilibrium RSS(–), and for smaller κ, the corresponding

smaller k̃∗
A exist.

Proof) The last part of the above lemma is proved as follows: Feasible con-

dition is Φ1(κ) < Φ2(κ) and limk̃A→0 Φ1(k̃A) = ∞ > k̃∗∗ = limk̃A→0 Φ2(k̃A).

(Q.E.D)
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We respectively call the Romer(+) regime and Romer(–) regime the

growth phase converging RSS(+) and RSS(–).

3.2 Determination of the Steady State

We call the steady-state type of the economy with δ > Ω as the multiple

steady state (MSS), because the economy with δ > Ω satisfies the conditions

for the RSS(+/–) and the SSS always exists. As for an economy with δ < Ω,

it has only the SSS. Accordingly, the emergence of steady state(s) is uniquely

determined by the economy’s parameter set {δ, κ, ρ + n, θ, α, η}. Thus, the

determination of the steady state is summarized in the following proposition.

Proposition 1: Under a sufficiently small κ, an economy has either mul-

tiple steady states or only poverty trap, depending on the following parameter

condition:

δ

{
>

<

}
Ω(η, ρ, n, α) ⇔

{
MSS (RSS+SSS)

SSS.

This proposition implies that deep parameters determine the growth rate

in the long-run: small ρ + n and large δ lead to the RSS. Intuitively, these

results imply that a country with higher R&D efficiency and more patience

has the possibility to realize the RSS, that is, long-run R&D-based growth.

However, this proposition also implies that any country has possibility stuck

in the SSS, that is, although a country has a sufficiently high R&D efficiency

parameter, it always has the possibility to be caught in the poverty traps.

Because the purpose of this study is the multiplicity of steady states in the

developed countries, namely countries that can grow with innovation (at

least, potentially), we later assume that RSS is possible, that is, δ > Ω (or

equivalently, Ω/δ < 1) holds. Further, for simplicity, we assume that RSS(–)

uniquely exists.

In this situation, we have the following lemma about the steady-state

knowledge-adjusted capital accumulation:

Lemma 1-3 The knowledge-adjusted capital allocated to the production sec-

tor in SSS, RSS(–), and RSS(+) have the following order:

k̃∗∗
Y (= k̃∗∗) > k̃∗−

Y > k̃∗+

Y .

11



Proof. From steady-state values, we have k̃∗∗ = k̃∗∗
Y =

[
α2η−α

ρ+n

] 1
1−α

, k̃∗−
Y =[

α3

(1−α)ηαφ(k̃∗−
A )

] 1
2−α

, and k̃∗+

Y =
[

α3

(1−α)ηαδ

] 1
2−α

. Then, from the proof of the

Lemma 1-2, we already obtained k̃∗∗
Y (= k̃∗∗) > k̃∗−

Y . (Q.E.D.)

4 Transition Dynamics and Steady States

In this section, we analyze transition dynamics. On the transition path, we

have two regimes, characterized as k̃A > 0 and k̃A = 0. We call them as the

Romer regime and the Solow regime, respectively.

4.1 Local Transition Dynamics

An economic system comprises Eqs. (2), (3), (4), the Euler equation and the

equation in condition (9). We reconstruct this into a system comprising k,

c, and k̃Y . Substituting Y and r given in Eq. (3) into Eq. (2), we obtain the

dynamics of k:

˙̃k(t) = η−αk̃Y (t)α − c̃(t) −
{

φ(t)
(
k̃(t) − k̃Y (t)

)
+ n

}
k̃(t). (10)

Further, substituting gc̃+gA = gc and r = α2η−αk̃α−1
Y into the Euler equation,

we obtain the dynamics of c as follows:

˙̃c(t) =
1

θ

{
α2η−αk̃Y (t)α−1 − ρ + n − θφ(t)(k̃(t) − k̃Y (t))

}
c̃(t). (11)

These two dynamics are common to the two regimes. In the case of k̃Y , each

regime follows different dynamics as described below.

4.1.1 Dynamics of the Economy in the Solow Regime

First, we investigate the Solow regime characterized by condition k̃A = 0,

which directly leads to k(t) = kY (t) and A(t) = Ā. Thus, the Solow

regime also exists on a two-dimensional plane, which we call the Solow-

regime manifold. Under this condition, the system comprising Eqs. (10)

and (11) is changed such that it comprises k̇(t) = η−αĀ1−αk(t)α − c(t) and

ċ(t) = 1
θ

{
α2η−αĀ1−αk(t)α−1 − ρ − n

}
c(t). Thus, the dynamic system in this
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case is similar to that of the normal Solow model. One difference is the

interest rate, because the Romer-type R&D-based growth model contains

distortional intermediate goods pricing. However, the dynamic properties

are essentially the same as the normal Solow model.

Lemma 2-1 The Solow regime is globally possible, and the SSS is saddle-

path stable.

Proof. See the Appendix.

4.1.2 Dynamics of the Economy in the Romer Regime

Next, we examine the Romer regime, which is the steady state with KA > 0.

From Eq. (7) and the equation in (9), we obtain gr − gφ = r − δπ
r

. Then, r

and π̃ derived in Eq. (3) yield gr = (α − 1)gk̃Y
and δπ̃/r = δ(1 − α)k̃Y /α.

Substituting these two equations into gr−gφ = r− δπ̃
r

, we obtain the dynamics

of k̃Y as

k̇Y (t) =
φ(t)

α
k̃Y (t)2 − gφ(k̃(t) − k̃Y (t))

1 − α
k̃Y (t) − α2η−α

1 − α
k̃Y (t)α. (12)

We have two regimes of the value of φ; one is named by the Romer (+)

regime, where φ(t) = δ (constant), and the other by the Romer(–) regime,

where φ(t) is variable.

Under the Romer(+) regime, imposing φ(t) = δ and φ̇(t) = 0 on (12)

yields ˙̃kY (t) = δ
α
k̃Y (t)2 − α2η−α

1−α
k̃Y (t)α. Because the dynamics of k̃Y guided

by this reduced equation is the function that contains only k̃A, the dynamic

properties of k̃Y are directly obtained, and the dynamics of k̃Y are found

to be unstable around k̃∗
Y , as is given in Fig. 3. In the Romer(+) regime,

knowledge-adjusted capital allocated to final goods k̃Y (t) is necessary to be

constant at k̃Y (t) = k̃∗+

Y and therefore, knowledge-adjusted capital stock is

necessary to be sufficiently large, that is, k̃(t) > k̃∗+

Y . We call the plane

k̃Y (t) = k̃∗
Y , on which the economy in Romer(+) regime transits, as the

Romer(+)-regime manifold. Thus, the Romer regime with RSS(+) is de-

picted on a two-dimensional plane {k̃(t), c̃(t)}, and considering this property

and (10) and (11), RSS(+) is conformed as having saddle-path stability (See

Appendix).

On RSS(–), φ is variable. We define σ ≡ φ′(k̃A)k̃A

φ(k̃A(t))
and assume that σ is, at
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least, constant around the RSS(–). Under this setup, we have the following:

˙̃kY (t) = Ψ(t)

[
− α2

1 − α
η−αk̃Y (t)α +

φ(k̃A(t))

α
k̃Y (t)2

− σk̇(t)

(1 − α)k̃A(t)
k̃Y (t)

]
. (13)

where Ψ ≡ (1−α)(k̃−k̃Y )

(1−α)(k̃−k̃Y )−σk̃Y
(> 1). Because k̃A = k−k̃A, the system is depicted

by three variables {k̃, c̃, k̃Y }. Thus, the linearized system of the Romer(–)

regime around the steady state are given by Eqs. (10), (11), and (13), and

the Appendix shows that the system has a positive determinant. Thus, if

the system has a negative trace, it has an indeterminacy property, which is

obtained, for example, by a sufficiently large externality σ: see the Appendix

for detail analysis of the dynamic properties of the Romer(–) regime. Differ-

ent from the RSS(+), the Romer (–) regime does not contain the threshold

value and is possible at any initial value of knowledge-adjusted capital stock.

Lemma 2-2 The Romer(+) regime is possible for k̃(t) > k̃∗+

Y and the

Romer(–) regime is possible for any capital stock level. The RSS(+) has

saddle-path stability, and the RSS(–) shows indeterminacy for sufficiently

large externality parameter σ.

4.2 Global Transition Dynamics and Steady States

Combining the local transition dynamics and the steady state condition dis-

cussed in the previous section, we here derive the global dynamics in the

present study.

From the above discussions, the basic development process is described as

follows. If the economy has RSS(+) and expects this to be the steady state

of the economy but has smaller initial knowledge-adjusted capital than the

threshold value k̃∗+

Y , then the economy cannot ride on the Romer(+) regime

at the early stage. This is because from Lemma 2-2, the transition path con-

verging to the RSS(+) needs larger knowledge capital than k̃∗+

Y . Thus, until

the economy accumulates capital k̃ = k̃∗
Y , the economy grows by only capital

accumulation, and after reaching the threshold value k̃∗
Y , it grows by techno-

logical progress through R&D. This is the process of economic development
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described in the line of Abramovitz and David (1973) and Hayami and Oga-

sawara (1999). In this process, Lemma 2-1 implies that the economy always

has possibility stagnation (SSS), and therefore, the global indeterminacy, se-

lection between RSS(+) and SSS, emerges. The phase diagrams related to

these growth patterns are shown in Fig. 4.

Proposition 2-1 If an economy has sufficiently high R&D efficiency (δ >

Ω), it always has steady states both with and without R&D, respectively

RSS(+) and SSS, and the corresponding perfect-foresight saddle-stable tran-

sition paths that are convergent to RSS(+) and SSS. In this case, for the

sake of escaping from the no-growth trap, the economy stuck in the SSS path

must change the expectation to select RSS(+) path.

Furthermore, the economy also has the possibility converging to RSS(–),

if existing conditions, such as sufficiently large externality, are satisfied. In

this case, the economy has RSS(–), and furthermore, the Lemma 2-2 implies

that the path converging RSS(–) shows (local) indeterminacy, that is, infinite

rational economic paths in the RSS(–) exist.

Different from the Romer(+) regime, a threshold value of capital does not

exist in this regime, and in addition to the two saddle-stable paths described

in Proposition 2-1, the economy has continuous number of economic path

converging RSS(–), which is represented in Fig. 5 as a shaded area. From

the above discussion, we have the following results for the transition path.

Proposition 2-2 When the R&D externality is large, in addition to long-

run positive and zero growth saddle-stable paths converging RSS(+) and SSS,

there might be long-run growth regimes with middle-growth rates and converg-

ing RSS(–), which shows (local) indeterminacy. Thus, the economy shows

both global and local indeterminacy in this case.

Under the assumption of the existing RSS(+), δ > Ω, Lemma 1-3 implies

that the economic path converging SSS or RSS(–) accumulates knowledge-

adjusted capital larger than the threshold value to give rise to the Romer

regime RSS(+), k̃∗+

Y , and thus, we obtain the following.

Proposition 2-3 Even if the economy selects RSS(–) or SSS path, it accu-

mulates sufficiently large knowledge-adjusted capital stock k̃∗+

Y , which makes
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it feasible to start the long-run high R&D-based growth, that is, the Romer(+)

regime. Therefore, if R&D efficiency condition δ > Ω is satisfied, the econ-

omy eventually satisfies the condition for realizing the Romer(+) regime,

which guides the economy to RSS(+).

5 Conclusion

We developed a model with an endogenously accumulated R&D input factor

and intense R&D spillover effects for a small R&D input. The study showed

that there exist multiple steady states containing high-, middle-, and no-

R&D-based long-run growth. The former assumption demonstrates that the

R&D activity level can be assigned to (human and physical) capital endow-

ment; and the latter assumption yields the existence of no- and low-R&D

equilibria together with the large-R&D equilibrium, and that each steady

state has a stable path. For this reason, the model contains indeterminacy

on the selection of the economic path, and the selection depends on the ex-

pectations. Thus, the economy can at any time ride on the path converging

to the no-growth steady state, and may jump on it if there are pessimistic

expectations.

The model includes multiple equilibria that emerge for a sufficiently high

R&D parameter. These equilibria explain other phenomena of economic

growth and development. An economy can jump from one equilibrium condi-

tion to another merely by changing its expectations, generating the leapfrog-

ging seen in GDP rankings. These equilibria also account for the possibility

that if countries with identical economic parameters form different expecta-

tions to alternative outcomes of poverty traps or steady R&D-based growth,

they can have very different growth experiences.

In the future, we need to look into the formation of expectations, which

is the main determinant of equilibrium selection.
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Appendix

Analysis of Stability

In a steady growth path, the system of a decentralized economy comprises

Eqs. (2), (3), (4), (5), and the Euler equation. The system constituted by

K, KY C, A, and Ṽ is reconstructed into a system constituted by k̃, c̃, and

k̃Y . Then, we have three dynamic equations: (10), (11), and (12).

Two types of steady states exist. SSS (in which GDP is stationary) and

RSS (in which GDP shows positive long-run growth).

The Case of SSS In a no-growth equilibrium, k̃∗∗
Y = k̃∗∗ holds. In this

case, the Jacobian J∗∗ is given as

J∗∗ ≡

(
αη−αk̃∗∗α−1 − n −1

α2(α − 1)k̃∗∗α−2c̃∗∗ 0

)
.

Thus, Det J∗∗ = α2(α−1)k̃∗∗α−2c̃∗∗ < 0 is verified, and thus, the system with

SSS is shown to be saddle-path stable.

The Case of Romer (+) On RSS(+), because the dynamics of k̃Y guided

by Eq. (12) are given by a function that contains only k̃A as a variable, the

dynamic properties of k̃Y are directly obtained from Eq. (12). The dynamics

of k̃Y around the steady state value, denoted by k̃∗
Y , are found to be unstable;

the phase diagram of k̃Y is given in the domain k̃Y ∈ (0, k̃ − κ) in Fig.2.

Therefore, in order to realize RSS, it is necessary that k̃Y (t) = k̃∗
Y must

be satisfied in, at least, the neighborhood of the steady state. Thus, the

dynamic system in the Romer regime must exist on the plane k̃Y (t) = k̃∗
Y .

Consequently, the system is reduced to a two-dimensional system comprising

k̃ and c̃.

˙̃k(t) = η−αk̃∗+α
Y − c̃(t) − δ

{
k̃(t) − k̃∗+

Y

}
k̃(t)

˙̃c(t) =
1

σ

{
α2η−αk̃∗+α−1

Y − ρ + n − θδ(k̃(t) − k̃∗+
Y )

}
c̃(t).

J∗+ ≡

(
−δk̃∗+ − δ

(
k̃∗+ − k̃∗+

Y

)
−1

−δk̃∗+
c̃∗

+
0

)
.
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Det J∗+ = −δk̃∗+c̃∗+ < 0 immediately shows that the steady state is saddle-

path stable.

The case of the Romer (–) regime Consider the linearization of the

system composed by Eqs. (10), (11), and (13):
˙̃k
˙̃c

˙̃kY

 = J∗−

 k̃ − k̃∗−

c̃ − c̃∗
−

k̃Y − k̃∗−
Y

 ,

where J∗− is the Jacobian of this linearized system on the Romer(-) regime.

Using φ′(k̃A)k̃A = σφ(k̃A) (from the definition of σ) and α2ηk̃∗α−1
Y = 1−α

α
φ∗k̃∗

Y

(from (9)), we calculate the Jacobian of SGE J∗− as

J∗− ≡


−a11φ

∗− − n −1 a13φ
∗−

−(1 + σ)φ∗− c̃∗
−

0 a23φ
∗− c̃∗

−

a31
σ

1−α
φ∗− k̃∗−

Y

k̃∗−
A

Ψ∗− σ
(1−α)

k̃∗−
Y

k̃∗−
A

Ψ∗− −a33φ
∗− k̃∗−

Y

k̃∗−
A

Ψ∗−

 ,

where

a11 = (2 + σ)k̃∗− − k̃∗−
Y

(
= (1 + σ)k̃∗− + k̃∗−

A > 0
)
,

a13 =
1 − α

α2
k̃∗−

Y + (1 + σ)k̃∗−(> 0),

a23 = −(1 − α)2

αθ
+ 1 + σ (the sign is ambiguous) ,

a31 =
1 − α

α
k̃∗−

Y + a11(> 0),

a33 =

(
1 − 2

α

)
k̃∗−

A︸ ︷︷ ︸
(−)

+
σ

α

(
1

α
+ 1

)
k̃∗−

Y +
σ(1 + σ)

1 − α
k̃∗−︸ ︷︷ ︸

(+)

(the sign is ambiguous) .

The values of Det J∗ and Tr J∗− are calculated as

Det J∗− = σφ∗− c̃∗
−
Ψ∗− k̃∗−

Y

k̃∗−
A

{
φ∗−

α

[
1 − α

αθ
k̃∗−

Y +
(1 + σ)(2 + α)

σ

]
+

a23

1 − α
n

}
,

T r J∗− = −a11φ
∗− − a33φ

∗− k̃∗−
Y

k̃∗−
A

Ψ∗− − n,

where σ, φ∗− , c∗
−
, Ψ∗−, k̃∗−

Y , k̃∗−
A , and a11 are positive. Therefore. if a23 > 0

and a33 > 0, then Det∗
−

> 0 holds, so this and Tr∗
−

< 0 imply that
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J∗− has {+ − −} possible set of eigenvalues. Consequently, the system is

indeterminate, that is, the economy has the multiple paths converging RSS(–

).

Here, we investigate the sufficient conditions for indeterminacy. Defining

s := k̃A/k yields

a33 > 0 ⇐⇒ s <
σ

{
1
α

(
1
α

+ 1
)

+ 1+σ
1−α

}
2
α
− 1 + σ

α

(
1
α

+ 1
) (:= s̄)

Therefore, small k̃A is necessary for indeterminacy, and this is consistent

for the property of k̃∗−
A that is the capital investment on R&D with row

R&D case. Furthermore, we always obtain s < s̄ if s̄ > 1. The condition

s̄ > 1 is translated into Λ(σ) ≡ σ2 + σ − (2−α)(1−α)
α

> 0. Since Λ is a

quadratic function with positive quadratic term, Λ > 0 is translated into

σ >
−1+

q

1+
(2−α)(1−α)

α

2
(≡ σ̄) (See Fig.6). Regard with a23, we immediately

obtain

a23 > 0 ⇐⇒ σ > σ

(
≡ −1 +

(1 − α)2

αθ
.

)
Thus, the economy that has sufficiently large elasticity of R&D efficiency

always has the steady state with middle-growth rate and indeterminacy.
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